
Time Crystals



Symmetry and its spontaneous breaking are 
at the heart of our modern understanding of 
the physical world.  

Spontaneous breaking of spatial translation 
symmetry is, of course, very common (as 
common as crystals).   

It is easy to construct mean field theories for 
that phenomenon:  



V (φ) = − µ2(∇φ)2 + λ((∇φ)2)2

V (φα) = Qαβ ∂iφα ∂iφβ + Λαβγδ ∂iφα ∂iφβ ∂jφγ ∂jφδ



Inspired by special relativity, or simply by 
analogy, it is natural to consider the 
possibility of spontaneous breaking of time 
translation symmetry. 

This turns out to bring in some surprising 
novelties. 



Classical Time Crystals



1.  At first sight, looking at the Hamilton 
equations, the idea seems like a non-starter: 



ṗj = − ∂H

∂qj

q̇j =
∂H

∂pj

Minimum energy ⇒ nothing moves (it seems)



2.  On the other hand, the Lagrangian 
analogue of our earlier, “crystalline” potential 
V suggests something different:



L =
1
4
φ̇4 − κ

2
φ̇2

E =
3
4
φ̇4 − κ

2
φ̇2

⇒ at energy minimum:  φ̇2 =
κ

3



3.  What has happened here?  

The point is that our innocuous-looking L 
leads to a cuspy H(p):



E =
3
4
φ̇4 − κ

2
φ̇2

p = φ̇3 − κφ̇

κ = .5



The energy minima occur at the cusps, so 
they needn’t - and don’t! - have horizontal 
slopes.



4.  When we add a potential, the energy becomes

If we choose initial conditions to minimize both the kinetic 
part and V, we’ve got a problem!

E =
3
4
φ̇4 − κ

2
φ̇2 + V (φ)



5.  More generally, the equation of motion

φ̈(φ̇2 − κ

3
) = − δV

δφ

breaks down at 

φ̇2 =
κ

3

unless the right-hand side also vanishes there.



6.  On the other hand, we are safe for 

E ≥ − 1
12

κ2 + Vmax.



7.  The connection between “breakdown” of 
the equation of motion and breaking of time 
translation symmetry (i.e., motion in the 
ground state) is general:



E =
∂L

∂φ̇j

φ̇j − L

∂E

∂φ̇k

=
∂2L

∂φ̇j∂φ̇k

φ̇j

( ∂L

∂φ̇k

).

=
∂2L

∂φ̇k∂φ̇j

φ̈j + ... (eqn. of motion)

So if the energy minimization condition 
∂E

∂φ̇k

= 0

has a non-trivial solution φ̇0
j , then the eqn. of motion

does not constrain the component of acceleration ∝ φ̇0
j



8.  It is understandable that it shouldn’t be 
too easy to get spontaneous motion.

If we have motion associated with the 
minimum energy, then we must have a whole 
curve of states with that minimum energy; 
and that degeneracy requires special 
conditions.

Are there non-trivial models?



Yes there are, two kinds:

Fine-tuned.

Natural, connected with broken 
symmetry.



9.  Lagrangians of the form 

L = f φ̇4 + gφ̇2 + h

E = 3f φ̇4 + gφ̇2 − h

= 3f(φ̇2 +
g

6f
)2 − g2

12f
− h.

for functions f, g,h lead to energies of the form 

So if 
g2

12f
+ h = const.

the energy is indeed minimized on a curve, for any 
f > 0, g< 0).



The energy will be minimized for 

φ̇2
0 = − g

6f

In this way we see that any orbit with a velocity that 
does not change sign can be realized, in many ways, as 

the stable minimum of an appropriate, reasonably simple 
Lagrangian.  

10.  Semi-classical quantization can avoid the singular zone, 
even with (small) potentials.  



11.  We can also get natural models by having 
the trajectories move along the orbit of a 
spontaneously broken symmetry.   This is an 
interesting and promising direction.  

12. Special cases: “Universal” Q ball, current-
carrying ground state, traveling density 
waves, ... 



Quantum Time Crystals



〈ψ|Ȯ|ψ〉 = − i〈ψ|[H,O]|ψ〉 =? 0

1. Quantum mechanically, one has a similar 
(apparent) “no-go”: 

would appear to vanish for the ground 
state, for any potential order parameter of 
motion. 



2.  Also:  A system with spontaneous τ 
breaking appears perilously close to being a 
perpetual motion machine. 

3.  Also: By what criterion are we going to 
pick out “ground states” that break τ (since 
minimizing <H> won’t do it)?    



And Yet ... 



1. In the right circumstances, supercurrents 
will flow forever in the ground state.  

This is suggestive; though if the current is 
constant, time translation symmetry τ is not 
broken.  (Time-reversal T of course is).    



2.  We can capture an important part of the 
essence of the matter by considering a very 
simple quantum mechanical model, to wit a 
charged particle on a ring threaded by 
magnetic flux.       



H =
1
2
(πφ − α)2

El =
1
2
(l − α)2

〈l|φ̇|l〉 = l − α

L =
1
2
φ̇2 + α φ̇



Thus if α is not an integer*, the ground 
state will support non-zero 〈l0|φ̇|l0〉

This is a direct consequence of the quantization of 
(canonical) angular momentum.

Since     is neither  the time derivative of a well-
defined operator,  nor the commutator of the 

Hamiltonian with one, there is no contradiction.  

φ̇

*(The half-odd integer case requires special consideration.)



Time reversal T is generally broken 
( intrinsically*, usually), but not time-
translationτ . 



3.  What might appear to be a special 
difficulty with breaking τ , because of its 
connection to the Hamiltonian, actually 
arises for all cases of spontaneous symmetry 
breaking.   Consider a complex order 
parameter that acquires a non-zero vacuum 
expectation value, which we can take to be 
real:

〈0|Φ|0〉 = v #= 0



We will also have alternative energetically 
degenerate, orthogonal** states with arbitrary values 
of the phase

〈σ|Φ|σ〉 = veiσ

The superposition 

|Ω〉 =
1
2π

2π∫

0

dσ |σ〉

is therefore energetically degenerate, and more 
symmetric: 

〈Ω|Φ|Ω〉 = 0



**The different σ states are orthogonal in 
the limit of infinite volume (or, more 
generally, an infinite number of correlated 
degrees of freedom), because we must 
multiply smaller-than-unity overlap factors 
infinitely many times.  



Ψσ(x1, ..., xN ) ≈
N∏

j=1

ψσ(xj)

〈Ψσ′ |Ψσ〉 ≈
N∏

j=1

〈ψσ′ |ψσ〉 = (fσ′σ)N → 0 (σ′ %= σ)



The comment (**) is also the key to why we 
prefer the σ states to Ω.    No finite product of 
local observables connects different σ states, so 
any world of observation will correspond to a 
single σ state: 



〈Ψσ′ |O1(xa, xb)O2(xc, xd, xe)...|Ψσ〉 ∝ (fσ′σ)N−finite → 0
(σ′ %= σ)



Thus the physical criterion that identifies useful 
“ground states” is not simply energy, but also 
observability.      

The infinite volume (or infinite DOF) limit is 
crucial here; finite systems cannot exhibit 
spontaneous symmetry breaking.   



Model
Existence Proof



With this background, we are ready to 
construct a simple model of τ violation.   

We take an infinite number (N → ∞) of 
copies of our ring-particles, with an identical 
attractive δ-function interaction between 
each pair.   



H =
N∑

j=1

1
2
(πj − α)2 − λ

N − 1

∑

j !=k

δ(φj − φk)



The particles will want to be in the same 
place, and (for noninteger α) they will want 
to move.  

So we can expect to get a moving lump.  
Such a dynamical configuration will violate τ, 
giving us a time crystal. 



Consider first α = 0.  

We take a product wave-function ansatz, and 
saturate with it (“mean field” approximation).  

(Operationally, we define an effective Veff.(Φ) with 

< ψ(Φ)| Veff.(Φ) | ψ(Φ) > = < Ψ(Φj)| V(Φj) | Ψ(Φj) > 
by integrating over N-1 variables.)  



In this way we arrive at a non-linear 
Schrödinger equation.   Its localized “soliton” 
solution, constrained to be periodic, can be 
expressed in elliptic functions:





In fact we both boost and “gauge-transform”, to get 
interacting versions of our earlier l  states. 

From Faraday’s law, we can expect that turning on the flux, 
i.e. cranking up α, torques the lump in a simple way.  



Specifically:   We can solve 

with  

and 

i
∂ψl

∂t
=

1
2
(−i∂φ − α)2ψl − λ|ψl|2ψl

ψl(φ, t) = e−ilφψ̃(φ + (l + α)t, t)

i
∂ψ̃

∂t
=

1
2
(−i∂φ)2ψ̃ − λ|ψ̃|2ψ̃ +

(l + α)2

2
ψ̃



The minimal energy solution occurs for the 
minimum value of (l + α).   If that quantity is 
not an integer, the solution is a moving lump. 
τ is then broken.   



Discussion



Were we literally talking about charged 
particles, we’d have to worry about coupling 
to the (dynamical) electromagnetic field, 
leading to radiation. 

Formal mechanism: “Long-wavelength” 
photons couple to all the ϕj.  The time-
evolution operator, which exponentiates this 
interaction, is non-local.  

So we should expect relaxation to the Ω 
state.



We can ameliorate this by using multipoles, 
or by putting a gap in the photon spectrum, 
e.g. by working in a cavity, insuring slow and 
possibly inconsequential relaxation. 



On more philosophical and speculative 
notes:

We’ve been discussing the spontaneous 
emergence of clocks.

More complex systems of this kind, 
taking excursions in a large, structured 
Hilbert space, could be quantum 
computers capable of dodging the heat 
death of the universe for a very long 
time.   



Imaginary Time Crystals



We represent the partition function as an integral 
over all configurations periodic in Space-iTime, with 
iTime period β = 1/T, weighted by e-S.     

Thus the partition function for a d-spatial dimension 
system is a weighted sum over d+1dimensional 
Euclidean field configurations.  

If the ground state of the d+1 dimensional theory is 
crystalline, the partition function will be dominated 
by iTime crystals.  



The crystal structure will fit without distortion if 
and only if the iTime lattice period divides β = 1/T 
evenly.    

Thus a signature for iTime crystalline states is some 
approximately periodic behavior in 1/T, especially 
for small T.    



Directions



Many questions and possibilities for development arise: 

Directed 0-point motion, more generally?

Concrete, practical realizations?

T ≠0 in real time?

Classification of space-time and space-iTime 
crystals. 

All the usual SSB questions:  excitation spectrum, 
phase transitions (critical dimensions), defects, ... 





END

[slide dump follows]



Sombrero Doble



1. To support motion in the ground state, we 
want constant energy along its orbit.  Orbits 
of constant energy are typically associated 
with symmetry, so it is natural to look for 
realizations in systems with symmetry.   



2.  The simplest example structure, 
conceptually, is a double Mexican hat, or 
sombrero doble.  We envision a radial field ρ 
with a sombrero potential governing its 
magnitude; and an associated angular field ϕ 
of the type we’ve been discussing, with a 
sombrero kinetic Lagrangian.   



3. The polynomial building blocks for invariant terms 
include:

ψ̇2
1 + ψ̇2

2 = ρ̇2 + ρ2φ̇2

ψ1ψ̇2 − ψ2ψ̇1 = ρ2φ̇
(
ψ2

1 + ψ2
2

). = 2ρρ̇

ψ2
1 + ψ2

2 = ρ2

4.  The sort of structure we want will appear if we have the 
square of the second term appearing with a negative 
coefficient, controlled by the square of the first term.   

There is considerable latitude, given that core structure.



As κ changes sign, the qualitative form of the 
energy function changes.   It is the unfolding 
of a mathematical “catastrophe”.
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Dynamics (and 
“Soundness”) of the fgh 

Model



1.  As a sort of existence proof / sanity check,  I’d like to 
demonstrate that the fgh model has sensible dynamics, and 

a good initial value problem in general (not just for 
f,g,h=const.).  

2.  The energy is

E = f
(
φ̇2 +

g

6f

)2

and so

φ̇2 +
g

6f
= ±

√
E

f

(Recall f > 0, g< 0; and obviously E ≥ 0.)   This is the 
equation for motion in an effective potential.



φ̇2 +
g

6f
= ±

√
E

f

Thus we can use our experience in mechanics 
to anticipate the motion. 

3.  Assume for simplicity f =1.  Then we have motion in 
the (negative) effective potential 

Veff. =
g

6f

with the effective, “fictitious” energy

Eeff. = ±
√

E

E = E2
eff.





4.  It’s entertaining, I think, that the bounded 
motions have higher energy than many 
unbounded motions. 


